Integrated multiple population analysis of leaf architecture traits in maize (Zea mays L.).

نویسندگان

  • L X Ku
  • J Zhang
  • S L Guo
  • H Y Liu
  • R F Zhao
  • Y H Chen
چکیده

Leaf morphology in maize is regulated by developmental patterning along three axes: proximodistal, mediolateral, and adaxial-abaxial. Maize contains homologues of many genes identified as regulators of leaf development in other species, but their relationship to the natural variation of leaf shape remains unknown. In this study, quantitative trait loci (QTLs) for leaf angle, leaf orientation value, leaf length, and leaf width were mapped by a total of 256 F(2:3) families evaluated in three environments. Meta-analysis was used to integrate genetic maps and detect QTLs across several independent QTL studies, on the basis of the previously reported experimental results for leaf architecture traits. Candidate gene sequences for leaf architecture were mapped in the integrated consensus genetic map. In total, 21 QTLs and 17 meta-QTLs (mQTLs) were detected. Among these QTLs, qLA1-1 and qLA2 were consistently detected in five and three populations respectively, and six of seven QTLs with contributions (R(2)) >10% were integrated in mQTLs. Six key mQTLs (mQTL1-1, mQTL2-1, mQTL3-3, mQTL5-1, mQTL7-2, and mQTL8-1) with R(2) of some initial QTLs >10% included 4-6 initial QTLs associated with 2-4 traits. Therefore, the chromosome regions for six mQTLs with high QTL co-localization might be hot spots of the important QTLs for the associated traits. Fifteen key candidate genes controlling leaf architecture traits coincided with 11 corresponding mQTLs, namely DWARF4, KAN3, liguleless1, TAC1, ROT3, AS2/liguleless2, PFL2, yabby9/SE/LIC/yabby15, mwp1, CYCD3;2, and CYCB1. In particular, DWARF4, liguleless1, AS2/liguleless2, yabby9/SE/LIC/yabby15, and CYCD3;2 were mapped within the important mQTL1-1, mQTL2-1, mQTL3-3, mQTL5-1, and mQTL7-2 intervals, respectively. Fine mapping or construction of single chromosome segment lines for genetic regions of these five mQTLs is worth further study and could be put to use in marker-assisted breeding. In conclusion, the results provide useful information for further research and help to reveal the molecular mechanisms with regard to leaf architecture traits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of the Effect of 5-Azacytidine as a DNA Demethylating Agent on Agronomic Traits, Androgenesis Induction via Anther Culture and DNA-Methyltransferase Gene Expression in Maize (Zea mays L.) Leaf Tissue

Optimization of in vitro methods for the production of maize double haploids plays an important role in the breeding programs of this plant. In this study, the effects of 5-azacytidine on agronomic traits, androgenesis induction efficiency and also, DNA methyltransferase gene expression (AF229183.1) in two growth stages of maize were investigated. This experiment was performed as factorial base...

متن کامل

Maize (Zea Mays L.) Growth and Yield Response to Ethephon Application under Water Stress Conditions

The aim of the present investigation was to study the growth, yield and yield components of maize (Zea mays L.) single cross 704 under different levels of irrigation, plant density, and ethephon in southern Iran where this particular crop has not yet been studied in detail. A field experiment was performed in the 2004 5 growing season at the experimental farm of the College of Agriculture, Shir...

متن کامل

Estimation of the breeding value of morphophysiological traits of maize (Zea mays L.) genotypes using BLUP method

Knowledge of genes action on important traits and their breeding value is necessary to achieve high yielding cultivars in food crops. Molecular markers has eliminated the need for knowing the pedigree of genotypes for estimating Kiniship matrix required to estimate breeding values of taits of interest. In this research, 97 genotypes of maize were evaluated for 17 different agronomic triats usin...

متن کامل

Genetic analysis of Biochemical and Physiological Traits using Haymen’s Graphical Approach in Lines and F2 Progenies of Maize (Zea mays L.)

The diallel mating design is an important tool used by plant breeding programs to obtain information on trait inheritance. Knowledge of gene action, heritability and genetic advance from selection is a prerequisite for starting a breeding program for developing varieties of maize. Five maize S7 lines and their F2 progenies were studied in a 5 × 5 half-diallel crossing design to evaluate the gen...

متن کامل

Analysis of the epistatic and QTL×environments interaction effects of plant height in maize (Zea mays L.)

A genetic map containing 103 microsatellite loci and 200 F2 plants derived from the cross R15 × Ye478 were used for mapping of quantitative trait loci (QTL) in maize (Zea mays L.). QTLs were characterized in a population of 200 F2:4 lines, derived from selfing the F2 plants, and were evaluated with two replications in two environments. QTL mapping analysis of plant height was performed by using...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of experimental botany

دوره 63 1  شماره 

صفحات  -

تاریخ انتشار 2012